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ABSTRACT

Coating lenses are membranes made of materials exhibiting negative index of refraction and deposited on other
media with high dielectric constant ε3. Unfortunately far-field imaging suffers from centrosymmetric aberrations.
We propose a simple procedure to compensate partially deviations from ray-tracing perfect imaging in asymmetric
metamaterial lenses. We also show that, under some circumstances, coating superlens may recover subwavelength
information transmitted in a relative spatial spectrum ranging from 1 to

√
ε3.
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1. INTRODUCTION

Asymmetric flat lenses are thin membranes made of materials exhibiting negative permittivity deposited on
other media such as glass with positive dielectric constant. Using a solid substrate, this imaging device becomes
mechanically stable. For silver superlenses, amplification of evanescent waves sustained by surface waves is
more favorable if the real part of the dielectric constant of the metal and the substrate matches except for
its sign.1 If the lensing film shows effectively a negative permeability, negative refraction allows imaging also
using homogeneous waves. Unfortunately there is no stigmatic imaging in the asymmetric arrangement and the
image suffers from aberrations. In Ref. 2 it is investigated the question of inner corrections of some low-order
aberrations for apertured multilayered flat lenses. However nonapertured superlenses are usually employed and
oblique aberrations may be disregarded.

In the general case that the index of refraction (IR) of the output image medium is higher than that IR
corresponding to the input medium surrounding the object, some evanescent waves emitted by the source become
homogeneous after passing through the lens. This allows the formation of far-field images with subwavelength
resolution. The transmitted spatial spectrum increases linearly upon the IR of the supporting image media, and
therefore high-index materials are preferable in order to obtain an enhanced superresolution effect.

We investigate the effects of primary spherical aberration (SA) and higher-order SA in asymmetric superlenses
made of metamaterials with negative IR. In Sec. 2 primary SA is corrected for a given object plane leading
to residual aberrations in out-of-focus planes. Contrary to the perfect lens, this effect is in agreement with
cancellation of shift invariance along the optic axis driven by asymmetry of the imaging problem. In Sec. 3
we show that the unbalanced arrangement allows proper conditions to retract backscattering. The diffractive
behavior of SA-corrected metamaterial coatings are disclosed in Sec. 4. We provide the point spread function of
such antireflection superlenses and we estimate the limit of resolution unambiguously. Finally we demonstrate
subwavelength capabilities in far-field imaging.

2. SPHERICAL ABERRATION IN FLAT LENSES

Let us consider the asymmetric flat lens shown in Fig. 1. A point object O1 is suspended at a distance s1 from
the front face of the superlens made of a material exhibiting negative index of refraction, n2 < 0. Assuming that
the object space is characterized by an index of refraction n1 > 0, a real Gaussian image O2 is formed in the
metamaterial.3 Traveling through the lens exit surface we reproduce the intermediate image at a distance s3
provided the index of refraction n3 of the image space turns to be positive. Note that we employ oriented axial
distances, i.e. s1 < 0 and s3 > 0 for a real object and a real image, respectively. Also the lens width d > 0.
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Figure 1. Schematic representation of an asymmetric flat lens of refractive index n2 and width d.

The aberration of a ray passing through the point P2 placed on the exit surface at a height h2 with respect to
the chief ray joining the points O1 and O2, and reaching the Gaussian image O3, is estimated by the optical-path
difference of both light rays, i.e. W = n1

(
O1P1 −O1Q1

)
+ n2

(
P1P2 −Q1Q2

)
+ n3

(
P2O3 −Q2O3

)
. This ray

aberration reads approximately4

W (h2) ≈ 0a20h
2
2 + 0a40h

4
2 + 0a60h

6
2 . (1)

The aberration terms 0a20, 0a40, and 0a60 are attributed to defocus, primary spherical aberration (SA) and fifth-
order SA, respectively. These aberration coefficients are evaluated by using the geometrical relations tanσ1 =
h1/s1 and tanσ2 = (h1 − h2) /d, and the Snell law n1 sinσ1 = n2 sinσ2. In particular, the Gaussian image plane
is given under the condition 0a20 = 0, which yields

s3 = n3

(
s1
n1

− d

n2

)
, (2)

Therefore an axial displacement of the object point O1 changing s1 leads to an image shift following a direct
proportion, as shown in Fig. 2(a). Moreover, a real image point O3 is obtained if the intermediate image O2 is
also a real image, attained at the condition d ≥ s1n2/n1.

At the Gaussian image point O3, where Eq. (2) is satisfied, the aberration coefficient for primary SA gives

0a40 =
n1n2

[
n3
1

(
n2
2 − n2

3

)
d+ n3

2

(
n2
3 − n2

1

)
s1
]

8n2
3(n1d− n2s1)4

. (3)

Note that primary SA cannot be corrected for 0 ≤ −s1 < ∞ whether n1 = n3 except for the perfect lens where
n2 = −n3. This is a well-known case where high-order aberration coefficients also vanish leading to stigmatic
imaging. Also a plane-parallel asymmetric plate may be corrected of primary SA. Provided the equation 0a40 = 0
is satisfied, we obtain a linear relationship between the lens width d and the object distance

s1 =
n3
1

(
n2
3 − n2

2

)

n3
2 (n

2
3 − n2

1)
d , (4)

in terms of the indices of refraction of the media involved. A given flat lens cannot be corrected of primary SA
for more than one object plane, as shown in Fig. 2(b). Furthermore, the primary SA coefficient diverges for the
limiting case s3 = 0, excepting when n3 �= n1 = −n2 leading to perfect imaging, corresponding to the highest
absolute value of the axial parameter s1. Therefore quality of the (real) image improves as the (real) object
point O1 come closer to the input surface.

In Figs. 2(c) and (d) we plot a ray tracing in a flat metamaterial lens of n2 = −2 surrounded by object and
image media of indices of refraction n1 = 1 and n3 = 4. Fixed the lens width d, Eqs. (2) and (4) provides the
values s3 = 1.6d and s1 = −0.1d, respectively. The corresponding ray tracing is shown in Fig. 2(c). Stigmatic
imaging would produce a convergent focused beam of numerical aperture n3 sinα = n1 leading to an angular
semi-aperture α = 14.5 deg. In our case, non-corrected high-order aberrations reduces the numerical aperture
down to an effective value αeff = 10.9 deg. In order to inspect the deterioration of the image due to SA effects we
also represent in Fig. 2(d) the ray tracing for a point object placed at s1 = −0.4d further from the lens entrance
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Figure 2. Geometrical imaging for a flat lens of n2 = −2 sandwiched between dielectric media of indices of refraction
n1 = 1 and n3 = 4. (a) Gaussian imaging based on Eq. (2). (b) Primary SA given by Eq. (3). On the right: Ray tracing
for an object point located at (c) s1 = −0.1d, which is corrected of primary SA, and (d) s1 = −0.4d from the front surface
of a flat lens of width d.

surface. We observe a ray distribution that is barely confined around the Gaussian image point O3, represented
as a green dot in the image space, in opposition with the SA corrected case.

We point out that Eq. (4) provides a negative value of s1 provided that the index of refraction n3 in the
image plane is either higher or lower than n1 and |n2| simultaneously. In order to achieve a subwavelength effect,
we pretend to transform evanescent waves emitted by the source O1 into homogeneous wave modes in the image
space. Therefore we choose a high-index dielectric n3 > n1 to register the image.

The aberration coefficient for the 5th order SA may be estimated analytically. Provided Eqs. (2) and (4) are
satisfied, this high-order SA coefficient gives

0a60 = −n13
1

(
n2
1 − n2

3

) (
n2
2 − n2

3

)6

16n2
2n

14
3 (n2

2 − n2
1)

5
s51

. (5)

Therefore 0a60 vanishes only for trivial solutions: (1) imaging under mirror-symmetry negative refraction on the
output surface provided n1 �= n3 = −n2 and s1 = 0, and (2) incidence of a collimated bundle of rays for which
s1 tends to infinity. Excepting these special cases, fifth-order SA cannot be corrected.

The ratio n3/n1−1 provides the relative enlargement of spatial bandwidth corresponding to evanescent waves
in the object space which are transformed into homogeneous plane waves in the image space. This is clearly a
subwavelength effect which has been exploited elsewhere.5 In image formation this physical phenomenon leads
to a superresolving effect, which will be developed in Sec. 4. On the other hand we point out that the value of
n2 is arbitrarily chosen provided it is negative. This is a degree of freedom which may be profited in order to
impose any additional constraint.

3. REFLECTION AND TRANSMISSION

Let us consider the reflection and transmission of obliquely incident light onto the thin metamaterial film de-
posited on top of a transparent substrate in order to determine a suitable choice for the value of n2. The reflection
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Figure 3. (a-c) Coefficient |r|2 and (d-f) transmission coefficient (modulus and argument) for TE waves in a superlens
of μ2 = −1 + i0.001 and ε2 = −4 + i0.001. Surrounding transparent media have again indices of refraction n1 = 1 and
n3 = 4. We consider different film widths: (a) and (d) d = 5.125λ0, (b) and (e) d = 0.875λ0 , and (c) and (f) d = 0.125λ0 .
Note that in (c) we use a logarithmic-scale axis (not in its inset).

(r) and transmission (t) coefficients evaluated from the object plane in front of the asymmetric layered lens to
the image plane are6

r =
r1,2 + r2,3 exp (2iβ2d)

1 + r1,2r2,3 exp (2iβ2d)
exp (−2iβ1s1) , (6a)

t =
t1,2t2,3

1 + r1,2r2,3 exp (2iβ2d)
exp (−iβ1s1 + iβ2d+ iβ3s3) , (6b)

being the propagation constant

βi = σi

√
εiμik20 − �k⊥ · �k⊥, (7)

where σi = 1 for dielectrics and σ2 = −1 for negative-index media, k0 = 2π/λ0 is the wavenumber in vacuum,

εi and μi stand for relative permittivity and permeability of the media involved, respectively, and �k⊥ is the
transverse wave vector, i.e. the projection of the wave vector over a plane that is parallel to each flat-lens
interface. The Airy’s formulae (6) depend on the reflection coefficient at a single interface,

ri,j =
μjβi − μiβj

μjβi + μiβj
. (8)

which is valid for s-polarized waves, and the transmission coefficient ti,j = 1 + ri,j . For the sake of brevity we
will deal with p-polarized waves elsewhere.

A layer with β2d = − (2m+ 1)π/2 (for m = 0, 1, 2, . . .) can be used to completely eliminate the reflection
of light, which is intrinsically a dispersive phenomenon depending upon k0. This is commonly denominated an
antireflection coating. For that purpose we additionally impose r1,2 = r2,3 in Eq. (6a) leading to r = 0, which is
satisfied if

β2
2μ1μ3 = μ2

2β1β3 . (9)

For normally incident light, i.e. k⊥ = 0, Eq. (9) is simplified as Z2
2 = Z1Z3, where Zi is the intrinsic impedance

of the medium i. Let us also assume that μi = σi. Therefore we finally obtain a condition n2 = −√
n1n3

involving the indices of refraction of all media. Note that the latter equation is hold in simulations shown in
Fig. 2. Finally, a quarter-wave layer with d = λ2/4 (+mλ2/2 for m �= 0), being λ2 = λ0/ (−n2) is of our interest.

In Figs. 3(a-c) we show the reflectance |r|2 evaluated for s-polarized waves and superlenses of different widths.
We observe that reflection is extinguished for k⊥ = 0 in all cases. However reflectance may be significant for higher
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spatial frequencies. Note that there is no average flow into the medium of lesser refractive index for k⊥ > k0.
The field intensity within this spectral domain, however, is by no means zero, and the reflection coefficient might
reaches absolute values higher than unity, clearly seen in the inset of Fig. 3(c) for m = 0. Moreover, the time
average of the flow in the object space is supported by evanescent waves that do not contribute to the far field.
In Figs. 3(d-f) we also represent the transmission coefficient t in amplitude and phase. For a slab width much
higher than the wavelength, the evanescent waves emitted by the source point O1 cannot reach the entrance face
and homogeneous waves satisfying k⊥ ≤ k0 contribute effectively to the transmitted field in the image space, as
shown in Fig. 3(d) for d = 5.125λ0. Decreasing d down to values close to λ0 leads to the conversion of evanescent
waves in medium 1 to homogeneous waves in medium 2. In Fig. 3(e) we observe a critical participation of waves
with transverse spatial frequencies k0 < k⊥ < 2k0 for a lens width d = 0.875λ0. In the limit d = 0.125λ0

associated with m = 0 we increase the spatial bandwidth in the interval 2k0 < k⊥ < 4k0 involving evanescent
waves in media 1 and 2 which are transformed into homogeneous waves in the image space, as seen in Fig. 3(f).
For that reason such a spectral stretching allows a subwavelength resolution effect in the formation of the far-field
image.

4. SUPERRESOLVING IMAGE FORMATION

To determine the limit of resolution of a flat superlens we use the field distribution generated by a point object.
Hakkarainen et al. calculated the PSF of the imaging system by investigating near-field imaging of a point dipole
by a lossy, nanoscale metamaterial slab.7 In this study we follow a different approach consisting of evaluating
the PSF produced by a point source which is characterized by a delta function in the object plane. This is
thoroughly discussed in Ref. 8 and here we only give a brief summary.

Based on the angular spectrum representation of the scattered field, for s-polarized waves, the field �E in the
image space may be expressed as a 2D convolution,

�E
(
�R, z

)
= �Esc

(
�R
)
∗ h

(
�R, z

)
, (10)

where �Esc is the electric field excited by the source at the object plane. Strictly speaking Eq. (10) is not restricted
to sources located at the object plane involving simple defocusing effects in the impulse response. Let us consider
a single object point O1 from here on. The optic z-axis containing the point O1 and the intermediate and final
image points, O2 and O3 respectively, is characterized by the unit vector ẑ, and therefore the transverse 2D
vector �R ⊥ ẑ. The scalar 3D PSF

h
(
�R, z

)
=

1

(2π)2

∫∫
t
(
�k⊥

)
exp

(
i�k⊥ �R

)
exp (iβ3z)d�k⊥, (11)

is derived by means of the transmission coefficient between the object plane and the conjugate image plane given
in Eq. (6b). Note that h(�R, z > 0) for t = 1 represents the propagator of the first Rayleigh-Sommerfeld integral
and it is related with a divergent wave which focus is placed in the center of the image plane z = 0.9

For symmetric flat lenses where n1 = n3, Eq. (10) may be set as a 3D convolution in virtue of its property of
shift invariance along the z-axis. However asymmetric flat lenses are not invariant under displacements on the
optic axis. This is in agreement with our discussion in Sec. 2 concerning SA correction, which is achieved in a
unique object plane. In fact, the transmission coefficient t given in Eq. (6b) varies when the distance s1 from
the flat lens to the object plane changes and so the 3D PSF h does accordingly.

The integrand in Eq. (11) is radially symmetric so that the evaluation of the 3D PSF is simplified as8

h (R, z) =
1

2π

∫ ∞

0

t (k⊥)J0 (k⊥R) exp (iβ3z)k⊥dk⊥, (12)

where the radial coordinate R = |�R|, and J0 is the Bessel function of the first kind and of order 0. In Fig. 4
we represent the 3D PSF for a negative-index lens of μ2 = −1 + i0.001 and ε2 = −4 + i0.001 and different
widths, which is sandwiched in media of IR n1 = 1 and n3 = 4. The object point O1 is placed at a distance
s1 = −0.1d given by Eq. (4) to correct primary SA. We compute the impulse response within the interval
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Figure 4. Magnitude of the PSF |h| within z ≥ −s3 for a negative-index slab with μ2 = −1+ i0.001 and ε2 = −4+ i0.001
and different widths d = λ2/4 + mλ2/2: (a) d = 5.125λ0, (b) d = 0.875λ0 , and (c) d = 0.125λ0. The density plots are
normalized to unity at the paraxial image point (x, z) = (0, 0). The solid line indicates points where amplitude falls off
1/2. The dashed red line marks the Gaussian image plane.

z ≥ −s3 constituting the real image space. The amplitude distribution of the PSF for a slab width d below
the wavelength shows a behavior different than the impulse response for d 
 λ0. For instance, if d = 5.125λ0

shown in Fig. 4(a), the FWHM of the PSF in the geometrical image plane yields Δx = 0.778 in units of λ0,
which is close to the wavelength. Moreover, the amplitude maximum is found far from the output interface quite
close to the image plane. Nevertheless a small axial shift of 0.989 λ0 is encountered in opposite direction to the
lens driven by residual high-order aberrations. Additionally the FWHM along the z-axis may be evaluated in
this case giving Δz = 9.77, also in units of λ0. Fig. 4(b) illustrates the diffraction behavior of a thinner film
in the case d = 0.875λ0. The limit of resolution has decreased substantially both in the transverse direction,
Δx = 0.476, and along the optic axis, Δz = 3.03. According to Fig. 3(e), this superresolving response may be
attributed to evanescent waves in medium 1 that are converted into homogeneous waves in medium 2, which
belong to the spectral range k0 < k⊥ < 2k0, and contributes effectively to the wave field in the image. However,
wave aberrations introduce a spatial blurring of the PSF restraining an improved resolution. This argument also
sustains the significant on-axis shift of 1.036 λ0 of the spot maximum getting far from the superlens. Finally,
when d = 0.125λ0 then Δx = 0.273, denoting a limit of resolution well below λ0. Note that in the imaging process,
the record of the subwavelength details are associated with spatial frequencies higher than k0. Moreover, those
frequencies surpassing 4k0 fall off fast in the transit from the output plane of the lens toward the image plane,
thus frustrating a 3D focusing.10

5. CONCLUSIONS

We conclude that the effects of SA may be alleviated in asymmetric superlenses made of negative-index metama-
terials. Primary SA is straightforwardly corrected for a given object plane. However residual aberrations come
out in other Gaussian conjugate planes. This effect is in agreement with cancellation of shift invariance along
the optic axis driven by asymmetry of the imaging problem. Moreover, the diffractive behavior of SA-corrected
metamaterial claddings is clearly improved by considering proper conditions to retract backscattering. By means
of the PSF of such antireflection imaging coatings we are able to estimate the limit of resolution unambiguously.
Finally we demonstrate far-field imaging may recover sub-λ information concerning evanescent waves launched
by the object. Proximity of the source from the entrance surface of the lens, and the latter from the exit interface
in comparison with the wavelength are crucial in order to exhibit a subwavelength resolution.
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